Chemists make breakthrough on road to creating a rechargeable lithium-oxygen battery RSS Feed

Chemists make breakthrough on road to creating a rechargeable lithium-oxygen battery

Chemists from the University of Waterloo have successfully resolved two of the most challenging issues surrounding lithium-oxygen batteries, and in the process created a working battery with near 100 per cent coulombic efficiency.

The new work, which appears this week in Science, proves that four-electron conversion for lithium-oxygen electrochemistry is highly reversible. The team is the first to achieve four-electron conversion, which doubles the electron storage of lithium-oxygen, also known as lithium-air, batteries.

“There are limitations based on thermodynamics,” said Linda Nazar, Canada Research Chair of Solid State Energy Materials and senior author on the project. “Nevertheless, our work has addressed fundamental issues that people have been trying to resolve for a long time.”

The high theoretical-energy density of lithium-oxygen (Li-O2) batteries and their relatively light weight have made them the Holy Grail of rechargeable battery systems. But long-standing issues with the battery’s chemistry and stability have kept them a purely academic curiosity.

Two of the more serious issues involve the intermediate of the cell chemistry (superoxide, LiO2) and the peroxide product (Li2O2) reacting with the porous carbon cathode, degrading the cell from within. In addition, the superoxide consumes the organic electrolyte in the process, which greatly limits the cycle life.

Nazar and her colleagues switched the organic electrolyte to a more stable inorganic molten salt and the porous carbon cathode to a bifunctional metal oxide catalyst….

Read full article at Waterloo News