The Biggest Threat To #Lithium_Ion Batteries RSS Feed

The Biggest Threat To Lithium-Ion Batteries

A team of researchers from the Department of Energy have discovered the fastest, they say, magnesium-ion solid-state conductor – a discovery that could potentially upend the battery market in the future and also one that is highlighting the intensifying rush to search for alternatives to lithium-ion batteries.

Most of these announcements usually cause little more than an indifferent shrug simply because it would take too long for the discoveries to attain any sort of commercial viability, especially in competition with lithium-ion batteries, which are also the object of research to make them more reliable, more efficient, and safer.

But the implications of this discovery are serious enough to merit a report. The key is the solid state of the conductor that the team created, which could be used as an electrolyte in a battery. Electrolytes are as a rule either metals in molten state or a liquid solution, through which ions travel. Conductors are solid-state metals, through which free electrons travel. One other important difference between conductors and electrolytes is that the electric current that flows through conductors is constant, which is not the case with electrolytes, where the strength of the current may change as the electrolyte changes over time.

The team tried to find a conductor that could become a less flammable alternative to electrolyte lithium-ion batteries and came up with a complex material with an even more complex name: magnesium scandium selenide spinel. The key ingredient in the mix was magnesium, which turned out to have mobility comparable to that of lithium ions in electrolyte batteries. In fact, one of the lead authors of the study, Pieremanuele Canepa, said the speed was “unprecedented”.

Still, it will be a long while until the discovery becomes a commercial product, so it would be a bit early to say it’s another nail in the coffin of lithium-ion batteries that so many people seem eager to build. It is even too early for another solid-state battery that uses glass as an electrolyte: the one developed by University of Porto assistant professor Marian Helena Braga and the creator of the first lithium-ion battery, John Goodenough.

In April, the glass battery project made headlines by promising a much higher energy density than normal lithium-ion batteries, a longer life cycle, non-flammability, faster charging times, and lower costs. Wonderful as all this sounds, it will take a lot of time to turn the prototype cell into an actual battery. A recent Bloomberg interview with Goodenough revealed that the team needs partners from the battery industry to make the jump from the lab to the factory. According to Goodenough, this could take between three and five years if all goes well.

Read full article at