#Vanadium_Redox Flow Batteries: The Next Big Wave After #Lithium_Batteries RSS Feed

Vanadium Redox Flow Batteries: The Next Big Wave After Lithium Batteries

Renewable energy sources have expanded significantly in recent years, especially wind and solar. One of the largest issues with wind and solar energy sources is the need to store and release the electrical energy produced. A promising storage technology is vanadium redox flow batteries that will increase the demand for vanadium.

An example of the significantly expanded renewable energy sources is wind energy. Global wind energy production has increased eightfold in the last 10 years.

Three big trends in my view will continue to drive growth in the medium term:

Climate Change:

The long-term targets adopted by the 186 countries gathered at the UN Climate Change Conference held in Paris in 2015, is a de facto call for a 100% emissions-free power sector by the year 2050 — benefiting renewable energy development such as wind and solar.

Falling Prices:

The costs of both wind and solar technology have fallen dramatically in recent years, and innovative financing and government subsidies are creating conditions for renewable energy sources to be competitive in many countries.

US Market Stability:

President Obama signed into law a long-term extension and phase-out of the Production Tax Credit (PTC) which has been the main federal policy mechanism of support for wind energy in the US. So, the US wind industry now embarks on its longest-ever period of policy stability, and the potential implications of this go far beyond the US market. The incoming US Secretary of Energy, Rick Perry, is a strong proponent of wind energy.

In their document, BP Energy Outlook 2035, the British multinational company, BP p.l.c. sees Europe leading the charge, with renewable energy accounting for 32% of its electricity generation by 2035.

All the while, BP sees China showing the largest absolute increase in renewables, as it looks to any source other than coal:

The emergence of utility-scale battery storage for energy is happening now, accelerating, and will get bigger in the next two to five years, according to Andrew Slaughter, the Center’s Executive Director and co-author of Electricity Storage Technologies, Impacts, and Prospects[1].

Lithium-ion batteries have taken the lion’s share of the energy storage market, but technological advances in flow batteries that bring down costs and improve their safety and environmental profile are likely to boost utility-scale installations and deployments. Compared to lithium-ion batteries, vanadium redox flow batteries (VRB) are non-flammable, environmentally friendly, have estimated lifespans in excess of 10,000 cycles and maintain 90% of their capacity over 20 years thereby lowering the total cost of ownership. Getting 1,000 cycles of use out of a lithium-ion battery with full depth of discharge however, would be ambitious.

VRB is ideal for “grid constrained” solar and wind farms that currently struggle to sell their electricity at times of peak production but find other forms of storage are not economical. The other advantage of VRB over lithium-ion batteries are a longer continuous discharge run time (6-10 hours versus 2-5 hours). The downside for VRB is their relatively lower round-trip efficiency (measured by power out over power in) of 70% compared to 85% with lithium batteries.

“…in Japan, Hokkaido Electric Power Co.’s 15-megawatt/60-megawatt-hour vanadium redox flow battery from Sumitomo [Electric Industries, Ltd.] started operation last December. Located next to one of the country’s largest solar power plants, it will be used for frequency regulation as well…. Korea’s largest battery installation was Korea Electric Power Corp.’s 28-megawatt lithium-ion array, which has also been earmarked for frequency regulation and will serve the grid around Seoul. The country says it is planning up to 2 gigawatts of storage by 2020.

Read full article at Value Walk